

Chemistry 318N

Spring 2008 Dr. Willson

First Midterm Exam

This evening you will take two tests, one in chemistry and one in integrity. I want you to get A's on both of these tests but if you are to fail one, let it be the one on organic chemistry. GW

Name (Print as it appears on the Class Roster)_____

Signature___

Here is some useful and some useless information F=Ma, y=mx+b; E=MC², Office = WEL 5.240, C= $3x10^8$ m sec⁻¹, $\upsilon = \gamma$ B, h=9.5x10⁻¹⁴ kcal sec mol⁻¹ = 4.0 x 10⁻¹³kJ; TA = Xinyu&Brandon, Willson \neq Wilson C_nH_{2n+2}; 95 = A, r =1.987 cal deg⁻¹ mol⁻¹, 1m = 10⁶µm; $\nu = (k/\mu)^{-1/2}$; $\notin <$; $\nu = 4/3\pi r^3$ $\nu\lambda = C$, 85 = B, $\gamma_{1H} = 42.576$ MHz/T, $\gamma_{13C} = 10.705$ MHz/T, D=VT, A= ϵ CL = log I₀/I, %T = I/I₀ x 100, micrometer = μ m = 10⁻⁶ m, 1nm = 10⁻⁹m, log 3 = 0.477, log 2 = 0.301, a+b = b+a, a^xa^y = a^{x+y}, A= $4\pi r^2$, OPEN=cool, R = 8.314 J·mol⁻¹·K⁻¹, 12:31 = tardy V=IR 1. (5 Pts) After hours of detailed analytical studies, we have narrowed down the structure of our unknown to one of two isomers of pentene. We are sure that we have either 1-pentene or 2-pentene. The mass spectrum shows a molecular ion at M/e = 70 amu and a base peak at 55 amu. Which isomer do we have? You must explain your answer to receive credit!

2. (10 pts) The easy way to tell the difference between cyclohexanone ($C_6H_{10}O$) and methyl cyclohexane (C_7H_{14}) is by comparison of their IR spectra. Unfortunately, our spectrometer is broken, and I have a sample that is either one of these compounds or the other. The molecular ion of my sample has a mass of 98.10962. *Calculate the precise mass of both substances* and by so doing, identify the unknown. Please show your work.

- 3. (10 pts) The resonance of peak one and peak two on our old 200 MHz proton nmr spectrometer was 400Hz and 420Hz respectfully as shown below.
 - a) At what frequency will these protons resonate on our new spectrometer with the gigantic, 18.0 Tesla Magnet?
 - b) Calculate the chemical shift of the low field proton on both spectrometers.

4. (10 pts) Cyclononatetraene, shown below, is a molecule that has no special stability. It can form a radical, an anion or a cation. Do any of these structures have special stability and if so, why? Write a molecular orbital energy level diagram for this molecule and support your answer based on molecular orbital arguments.

5. (5 pts) List the number of p orbital electrons in each molecule or ion and state which are aromatic according to the Hückel Criteria. (homework 21.15 & 21.16)

6. (10 pts) The proton nmr spectrum of 1,3-dichloropropane shows a triplet and a pentet as shown below. Please calculate there relative areas (a/b) of the peaks marked explicitly in the multiples. Show your work.

7. (20 Pts) A very pure sample of an interesting new compound was isolated as a distillation fraction. The mass spectrum of the compound shows a molecular ion at 84 daltons and combustion analysis gave an empirical formula of CH₂. The infrared spectrum of the compound shows strong peaks in the region of 2800-2950 cm⁻¹ and 1400 cm⁻¹, there are no peaks above 3000cm⁻¹ and no other strong peaks. The proton and carbon nmr spectra are provided below. The DEPT spectrum shows only two positive peaks, it looks just like the proton decoupled spectrum. Please interpret these spectral data and provide a structure that matches the data.

8. (5 Pts) Calculate the index of hydrogen deficiency of these compounds (homework problem 13.10)

a) Aspirin C₉H₈O₄

b) Pyridine C₅H₅N

c) Urea CH₄N₂O

d) p-Chloromethylstyrene C₉H₉Cl

9. (10 pts) The visible spectrum of β -carotene (C₄₀H₅₆, MW 536.89) dissolved in hexane shows intense absorbance maxima at 463nm (log $\varepsilon = 5.10$) and 494nm (log $\varepsilon = 4.77$), both in the blue green region. Because light is absorbed in this region by β -carotene, we perceive the color of the pigment as the compliment, namely burnt orange. Calculate the concentration in milligrams per milliliter of solution of β -carotene that gives an absorbance of 1.8 at 463nm in a standard, 1cm cell. (Home work problem 20.5)

10. (15 points) Circle the one best answer in each row.

Has lowest field proton resonance	CH_{3} $CH_{3}-Si-CH_{3}$ $CH_{3}-Si-CH_{3}$	CCl4	
Is not aromatic			
Has exactly 3 different ¹³ C resonances	Å	H ₃ C	H ₃ C H ₃ C CH ₃ H ₃ C CH ₃ CH ₃
absorbs IR at the shortest wavelength	c≡o	0=C=0	0=0
Attometer	10 ⁻¹⁶ cm	10 ⁻²¹ m	10 ⁻²³ cm
strongest acid			
Is in the infra red	10 -1	1000 -1	5000 -1
spectral region Has more bonding than antibonding molecular orbitals	10 cm ¹	1000 cm ¹	5000 cm 1
Has 6 pi electons			
Resonates at highest frequency (same B)	¹³ C	¹² C	1H
Has the largest M+2 peak	CH ₃ SCH ₂ CH ₂ F	CH ₃ OCH ₂ CH ₂ F	CH ₃ CH ₂ CHF ₂
Aromatic compounds			
Resonates at lowest field in ¹³ C-nmr	Н−С≡С−Н	О H—С—Н	(CH ₃) ₄ Si
Has a pentet splitting pattern in the ¹ H nmr spectrum	H H Br Cl Br Cl	H H Br H Br	H H Br H Cl
Has no nonbonding molecular orbitals			

CHEMISTRY 318N

CHARACTERISTIC PROTON CHEMICAL SHIFTS						
Type of Proton	Structure	Chemical Shift, ppm				
Cyclopropane	C ₃ H ₆	0.6				
Primary	R-CH ₃	0.9				
Secondary	R ₂ -CH ₂	1.3				
Tertiary	R ₃ -C-H	1.5				
Vinylic	C=C-H	4.6-5.9				
Acetylenic	C≡C-H	2-3				
Aromatic	Ar-H	6-8.5				
Benzylic	Ar-C-H	2.2-3				
Allylic	C=C-CH ₃	1.7				
Fluorides	H-C-F	4-4.5				
Chlorides	H-C-Cl	3-4				
Bromides	H-C-Br	2.5-4				
Iodides	H-C-I	2-4				
Alcohols	Н-С-ОН	3.4-4				
Ethers	H-C-OR	2.8-3.8				
Nitriles	H-C-C≡N	2.1-2.4				
Esters	H-C-COOR	2.0-2.2				
Carbonyl Compounds	H-C-C=O	2-2.7				
Aldehydic	R-(H-)C=O	9-10				
Hydroxylic	R-C-OH	1-5.5				
Phenolic	Ar-OH	4-12				
Enolic	C=C-OH	15-17				
Carboxylic	RCOOH	10.5-12				
Amino	RNH ₂	1-5				

CHEMISTRY 318N

CHARACTERISTIC INFRARED ABSORPTION FREQUENCIES					
Bond	Compound Type	Frequency range, cm ⁻¹			
С-Н		2960-2850(s) stretch			
	Alkanes	1470-1350(v) scissoring and			
		bending			
	CH ₃ Umbrella Deformation	1380(m-w) - Doublet - isopropyl, <i>t</i> -butyl			
С-Н	Allzanas	3080-3020(m) stretch			
	Aikenes	1000-675(s) bend			
	Aromatic Rings	3100-3000(m) stretch			
С-Н	Phenyl Ring Substitution Bands	870-675(s) bend			
	Phenyl Ring Substitution Overtones	2000-1600(w) - fingerprint region			
С-Н		3333-3267(s) stretch			
	Aikynes	700-610(b) bend			
C=C	Alkenes	1680-1640(m,w)) stretch			
C≡C	Alkynes	2260-2100(w,sh) stretch			
C=C	Aromatic Rings	1600, 1500(w) stretch			
C-0	Alcohols, Ethers, Carboxylic acids, Esters	1260-1000(s) stretch			
C=O	Aldehydes, Ketones, Carboxylic acids, Esters	1760-1670(s) stretch			
	Monomeric Alcohols, Phenols	3640-3160(s,br) stretch			
О-Н	Hydrogen-bonded Alcohols, Phenols	3600-3200(b) stretch			
	Carboxylic acids	3000-2500(b) stretch			
N-H	Amines	3500-3300(m) stretch			
	Annies	1650-1580 (m) bend			
C-N	Amines	1340-1020(m) stretch			
C≡N	Nitriles	2260-2220(m) stretch			
NO ₂	Nitro Compounds	1660-1500(s) asymmetrical stretch			
	Compounds	1390-1260(s) symmetrical stretch			

v - variable, m - medium, s - strong, br - broad, w - weak

Element	Atomic Weight	Isotope	Precise Mass (amu)	Relative Abundance
hydrogen	1.0079	'H	1.00783	100
		² H	2.01410	0.016
carbon	1 2.011	¹² C	12.0000	100
		¹³ C	13.0034	1.11
nitrogen	1 4.007	¹⁴ N	14.0031	100
		¹⁵ N	15.0001	0.38
oxygen	15.999	¹⁶ O	15.9949	100
		¹⁷ O	16.9991	0.04
		¹⁸ O	17,9992	0.20
sulfur	32.066	³² S	31.9721	100
		³³ S	32,9715	0.78
		³⁴ S	33,9679	4.40
chlorine	35.453	³⁵ Cl	34,9689	100
		37CI	36,9659	32.5
bromine	79.904	⁷⁹ Br	78,9183	100
		⁸¹ Br	80.9163	98. 0

Precise Masses and Natural Abundances

δ (PPM)